For additional information about your drinking water, contact the Water Quality Supervisor in the Public Works Department at 805-449-2499.

Este informe contiene información muy importante sobre su agua para beber. Tradúzcalo ó hable con alguien que lo entienda bien. Para más información, puede llamar al 805-449-2499.
OUR WATER SOURCES IN 2022

68% of the City’s water supply was from the State Water Project. This surface water is imported from Northern California, which originates at Lake Oroville. The water then flows through the Sacramento River Delta system and is transported via the California Aqueduct to Southern California. The water is treated, filtered and disinfected at the Metropolitan Water District’s (MWD) Jensen Filtration Plant in Granada Hills. 24% of the City’s water supply was from a blend of the Colorado River Aqueduct and the State Water Project. This water is treated, filtered and disinfected at MWD’s Weymouth Filtration Plant in La Verne. These water supplies are then piped directly to the City through the transmission facilities of the Calleguas Municipal Water District (Calleguas) located in Thousand Oaks. 6% of the City’s water supply came from Calleguas’ Los Posas Wellfields and the last 2% of the City’s water supply came from the Calleguas Lake Bard Reservoir and Water Filtration Facility. Should these water sources be interrupted by general maintenance, earthquake or other calamity, Calleguas can deliver water to the City solely from their Las Posas Wellfields and their Lake Bard Reservoir and Water Filtration facilities.

PUBLIC EDUCATION

The City is pleased to present to you this year’s Annual Water Quality Report, which shows that the City’s water supply met or exceeded all State and Federal standards in 2022. We are committed to providing you this information in the sincere belief that informed customers are our best partners. Included in this report are details about where your water comes from, what it contains and how it compares to State standards. The City works very hard with our neighbors, our partners and suppliers to continually improve the quality of the water supply, the protection of our water sources, the dependability of supply and the integrity of our storage and distribution system.

PUBLIC PARTICIPATION

The City drinking water system is managed as an enterprise fund by the elected City Council. Operations are conducted by the Public Works Department. The City Council meets on Tuesday evenings at 6 PM in the Scherr Forum Theater in the Civic Arts Plaza located at 2100 Thousand Oaks Blvd. For information about Council meeting schedules, please call 805-449-2151 or visit www.toaks.org.
PUBLIC HEALTH

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as those with cancer who are undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about their drinking water from their health care providers. The USEPA and the Centers for Disease Control guidelines on appropriate means to lessen the risk from infection by Cryptosporidium and other microbial contaminants are available from the USEPA Safe Drinking Water Hotline (800-426-4791).

Fluoride - MWD initiated a Fluoride Optimization Program in November of 2007. Naturally occurring fluoride level ranges from 0.1 to 0.4 mg/L (parts per million). MWD has adjusted the level to the optimal range for dental health of 0.7 mg/L. If you or your children are taking Fluoride supplements, please consult with your dentist or dental healthcare provider for further direction.

Purity and Contaminants - Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health risks may also be obtained by calling the Safe Drinking Water Hotline (1-800-426-4791).

The sources of drinking water (both tap and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

During the year, thousands of tests were conducted on our drinking water for over 150 drinking water constituents and contaminants to ensure the safety of your drinking water. Prior to filtration and treatment, contaminants that may be present in source water include:

Inorganic contaminants, such as salts and metals that can be naturally occurring or result from urban stormwater run-off, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.

Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater run-off, agricultural application and septic systems.

Microbial contaminants, such as viruses and bacteria that may come from sewage treatment plants, septic systems, agricultural livestock operations and wildlife operations and wildlife.

Radiological contaminants can be naturally occurring or the result of oil and gas production and mining activities.

Pesticides and Herbicides that may come from a variety of sources such as agriculture, urban stormwater run-off and residential uses.

Lead was not detected in the City’s water supply. However, if present, elevated levels of lead can cause serious health problems especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and private internal plumbing. The City does not use or install lead service lines and cannot control the variety of materials used in private plumbing components. If you are concerned about lead leaching out of your plumbing materials after your water has not been used for several hours, you can minimize the potential for lead exposure by flushing your tap for at least 30 seconds before using the water for drinking or cooking. Also, if you still have concerns about lead in your water due to internal plumbing materials you can hire a private laboratory to test your water for lead. Information on lead in drinking water, testing methods and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline (1-800-426-4791) or at http://www.epa.gov/safewater/lead.

MWD has conducted a source water assessment of its State Water Project supplies. State Water Project supplies are most vulnerable to urban/storm water runoff, wildlife, agriculture, recreation and wastewater. A copy of the assessment can be obtained by contacting MWD by phone at (213-217-6000).

In order to ensure that tap water is safe to drink, the SWRCB prescribes regulations that limit the number of certain contaminants in water provided by public water systems. The quality of our drinking water meets all State requirements for safe water.
The following table lists the drinking water contaminants that were detected in the City's drinking water during 2022. The presence of any of these contaminants in the water does not necessarily constitute a health risk. As you can determine from the results, the quality of the water delivered by the City consistently meets all State standards. The data presented in this table is from testing performed between January 1 and December 31, 2022, unless otherwise noted. State of California Standards are either equal to, or more stringent than Federal USEPA water quality standards. Therefore, Federal MCLs are not listed. Applicable Abbreviations, Definitions and Notes are identified at the conclusion of the Table.

WATER QUALITY DATA

PRIMARY DRINKING WATER STANDARDS (PDWS) - Mandatory Health-Related Standards

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>State MCL-MRDL</th>
<th>PHG (MCLG)-MRDLG</th>
<th>Range</th>
<th>Average</th>
<th>MWD Jensen Plant 68% of Supply</th>
<th>MWD Weymouth Plant 24% of Supply</th>
<th>Calleguas Las Posas Wellfield 6% of Supply</th>
<th>Calleguas LBWFP 2% of Supply</th>
<th>Potential Major Sources if Detected in Drinking Water</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLARITY [a]</td>
<td></td>
</tr>
<tr>
<td>Combined Filter Effluent Turbidity</td>
<td>NTU 0.3</td>
<td>Highest Value</td>
<td>0.05</td>
<td>0.04</td>
<td>N/A</td>
<td>0.10</td>
<td>Soil runoff</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TT= % of samples ≤0.3 NTU [a]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>100%</td>
</tr>
<tr>
<td>MICROBIOLOGICAL [b]</td>
<td></td>
</tr>
<tr>
<td>Total Coliform Bacteria (State Total Coliform Rule)</td>
<td>% of Samples 5%</td>
<td>Highest Monthly % 1.5%</td>
<td>City of Thousand Oaks Results</td>
<td>Naturally present in the environment</td>
<td>Effectice July 1, 2021</td>
<td>Standards for Cryptosporidium, Giardia lambia, Legionella, viruses and Heterotrophic Plate Count Bacteria are Treatment Techniques (TT) with which MWD and Calleguas comply. There were no detections of fecal coliform or E. Coli bacteria in the City's distribution system in 2022.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ORGANIC CHEMICALS

- **Pesticides/PCBs**
 - 28 chemicals were analyzed
 - None were detected

- **Semi-Volatile Organic Compounds**
 - 6 chemicals were analyzed
 - None were detected

- **Volatile Organic Compounds**
 - 27 chemicals were analyzed (including MTBE, PCE and TCE)
 - None were detected

INORGANIC CHEMICALS

- **Aluminum** [c]
 - ppb 1000 600
 - Range ND - 81 58 - 240 ND
 - Average 62 156 ND

- **Arsenic**
 - ppb 10 0.004
 - Range 2.4 ND 2.0 - 5.0 3.0
 - Average 2.4 ND 3.0

- **Barium**
 - ppm 1 2
 - Range ND 0.107 ND
 - Average ND 0.107 ND

- **Copper** [d]
 - ppm AL=1.3 0.3
 - Range ND - 0.20 N/A N/A N/A
 - 90th % 0.15 N/A N/A N/A

- **Fluoride** [e]
 - ppm 2.0 1
 - Range 0.7 - 0.9 N/A N/A N/A
 - Treatment related
 - Highest RAA 0.7 N/A N/A N/A

- **Lead** [d]
 - ppb AL=15 0.2
 - Range ND - 5.4 N/A N/A N/A
 - 90th % 2.2 N/A N/A N/A

- **Nitrate (as N)**
 - ppm 10 10
 - Range 0.9 ND 0.1 - 0.6 ND
 - Average 0.9 ND 0.4

- **Selenium**
 - ppb 50 30
 - Range ND ND 6 - 13 11
 - Average ND ND 8 11

14 other metals and chemicals were analyzed (including Asbestos, Chromium, Perchlorate, Mercury and Cyanide) none were detected. Copper and Lead were not detected in the water supply.
RADIONUCLIDES

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>State</th>
<th>State MCL-MRDL</th>
<th>PHG (MCLG)-MRDLG</th>
<th>Range Average</th>
<th>MWD Jensen Plant 68% of Supply</th>
<th>MWD Weymouth Plant 24% of Supply</th>
<th>Calleguas Las Posas Wellfield 6% of Supply</th>
<th>Calleguas LBWFP 2% of Supply</th>
<th>Potential Major Sources if Detected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gross Alpha Particle Activity</td>
<td>pCi/L</td>
<td>15</td>
<td>0</td>
<td>Range</td>
<td>Average</td>
<td>ND</td>
<td>ND</td>
<td>-3.1</td>
<td>ND</td>
<td>Erosion of natural deposits</td>
</tr>
<tr>
<td>Gross Beta Particle Activity</td>
<td>pCi/L</td>
<td>50</td>
<td>0</td>
<td>Range</td>
<td>Average</td>
<td>ND</td>
<td>6.0</td>
<td>ND</td>
<td>4.2</td>
<td>Decay of natural & man-made deposits</td>
</tr>
<tr>
<td>Uranium</td>
<td>pCi/L</td>
<td>20</td>
<td>0.43</td>
<td>Range</td>
<td>Average</td>
<td>ND</td>
<td>2.0</td>
<td>2.2</td>
<td>1.4</td>
<td>Erosion of natural deposits</td>
</tr>
</tbody>
</table>

3 other radionuclides were analyzed - none were detected.

DISINFECTANT RESIDUALS / DISINFECTION BY-PRODUCTS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>State</th>
<th>State MCL-MRDL</th>
<th>PHG (MCLG)-MRDLG</th>
<th>Range Average</th>
<th>MWD Jensen Plant 68% of Supply</th>
<th>MWD Weymouth Plant 24% of Supply</th>
<th>Calleguas Las Posas Wellfield 6% of Supply</th>
<th>Calleguas LBWFP 2% of Supply</th>
<th>Potential Major Sources if Detected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bromate</td>
<td>ppb</td>
<td>10</td>
<td>0.1</td>
<td>Range</td>
<td>Highest RAA</td>
<td>15.0</td>
<td>7.6</td>
<td>N/A</td>
<td>N/A</td>
<td>By-product of drinking water ozonation</td>
</tr>
<tr>
<td>Control of DBP Precursors as Total Organic Carbon (TOC)</td>
<td>ppm</td>
<td>TT</td>
<td>Range</td>
<td>Highest RAA</td>
<td>1.0 - 1.4</td>
<td>1.7 - 2.6</td>
<td>0.9 - 1.0</td>
<td>1.1</td>
<td>Various natural and man-made sources; TOC as a medium for formation of DBPs</td>
<td></td>
</tr>
<tr>
<td>Total Chlorine Residual</td>
<td>ppm</td>
<td>4</td>
<td>4</td>
<td>Range</td>
<td>Highest RAA</td>
<td>0.90 - 1.95</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>Drinking water disinfectant added for treatment</td>
</tr>
<tr>
<td>Halocetic Acids [i] (HAAS)</td>
<td>ppb</td>
<td>60</td>
<td>N/A</td>
<td>Range</td>
<td>Highest LRAA</td>
<td>1.4 - 4.5</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>By-product of drinking water disinfection</td>
</tr>
<tr>
<td>Total Trihalomethanes [i]</td>
<td>ppb</td>
<td>80</td>
<td>N/A</td>
<td>Range</td>
<td>Highest LRAA</td>
<td>11 - 22</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>By-product of drinking water disinfection</td>
</tr>
</tbody>
</table>

SECONDARY DRINKING WATER STANDARDS (SDWS) - Aesthetic Standards

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>State</th>
<th>State MCL-MRDL</th>
<th>PHG (MCLG)-MRDLG</th>
<th>Range Average</th>
<th>MWD Jensen Plant 68% of Supply</th>
<th>MWD Weymouth Plant 24% of Supply</th>
<th>Calleguas Las Posas Wellfield 6% of Supply</th>
<th>Calleguas LBWFP 2% of Supply</th>
<th>Potential Major Sources if Detected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum</td>
<td>ppb</td>
<td>200</td>
<td>600</td>
<td>Range</td>
<td>Average</td>
<td>81</td>
<td>156</td>
<td>ND</td>
<td>ND</td>
<td>Erosion of natural deposits; residue from water treatment processes</td>
</tr>
<tr>
<td>Chloride</td>
<td>ppm</td>
<td>500</td>
<td>N/A</td>
<td>Range</td>
<td>Average</td>
<td>73</td>
<td>98 - 105</td>
<td>63 - 90</td>
<td>105</td>
<td>Runoff/leaching from natural deposits; seawater influence</td>
</tr>
<tr>
<td>Color</td>
<td>Units</td>
<td>15</td>
<td>N/A</td>
<td>Range</td>
<td>Average</td>
<td>1</td>
<td>1</td>
<td>ND</td>
<td>ND</td>
<td>Naturally occurring organic materials</td>
</tr>
<tr>
<td>Iron</td>
<td>ppb</td>
<td>300</td>
<td>N/A</td>
<td>Range</td>
<td>Average</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>140</td>
<td>Runoff/leaching from natural deposits; industrial wastes</td>
</tr>
<tr>
<td>Manganese</td>
<td>ppb</td>
<td>50</td>
<td>NL = 500</td>
<td>Range</td>
<td>Average</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>110</td>
<td>Leaching from natural deposits</td>
</tr>
<tr>
<td>Specific Conductance</td>
<td>µS/cm</td>
<td>1600</td>
<td>N/A</td>
<td>Range</td>
<td>Average</td>
<td>557 - 572</td>
<td>964 - 1020</td>
<td>584 - 716</td>
<td>733</td>
<td>Substances that form ions when in water; seawater influence</td>
</tr>
<tr>
<td>Sulfate</td>
<td>ppm</td>
<td>500</td>
<td>N/A</td>
<td>Range</td>
<td>Average</td>
<td>71 - 80</td>
<td>212 - 232</td>
<td>90 - 133</td>
<td>89</td>
<td>Runoff/leaching from natural deposits</td>
</tr>
<tr>
<td>Total Dissolved Solids</td>
<td>ppm</td>
<td>1000</td>
<td>N/A</td>
<td>Range</td>
<td>Average</td>
<td>332 - 355</td>
<td>632 - 643</td>
<td>350 - 440</td>
<td>390</td>
<td>Runoff/leaching from natural deposits</td>
</tr>
</tbody>
</table>

7 other metals and constituents were analyzed - none were detected.

ADDITIONAL PARAMETERS (Unregulated)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>State</th>
<th>State MCL-MRDL</th>
<th>PHG (MCLG)-MRDLG</th>
<th>Range Average</th>
<th>MWD Jensen Plant 68% of Supply</th>
<th>MWD Weymouth Plant 24% of Supply</th>
<th>Calleguas Las Posas Wellfield 6% of Supply</th>
<th>Calleguas LBWFP 2% of Supply</th>
<th>Potential Major Sources if Detected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alkalinity</td>
<td>ppm</td>
<td>NS</td>
<td>NS</td>
<td>Range</td>
<td>Average</td>
<td>84</td>
<td>126 - 128</td>
<td>100</td>
<td>120</td>
<td>Erosion of natural deposits; residue from water treatment processes</td>
</tr>
<tr>
<td>Boron</td>
<td>ppm</td>
<td>NL=1</td>
<td>NS</td>
<td>Range</td>
<td>Average</td>
<td>0.22</td>
<td>0.14</td>
<td>0.20 - 0.46</td>
<td>0.30</td>
<td>Runoff/leaching from natural deposits; seawater influence</td>
</tr>
<tr>
<td>Calcium</td>
<td>ppm</td>
<td>NS</td>
<td>NS</td>
<td>Range</td>
<td>Average</td>
<td>32 - 34</td>
<td>68 - 71</td>
<td>36 - 53</td>
<td>39</td>
<td>Naturally occurring organic materials</td>
</tr>
<tr>
<td>Chlorate</td>
<td>ppb</td>
<td>NL = 800</td>
<td>NS</td>
<td>Range</td>
<td>Average</td>
<td>243</td>
<td>88</td>
<td>ND</td>
<td>30</td>
<td>Runoff/leaching from natural deposits; industrial wastes</td>
</tr>
<tr>
<td>Corrosivity [k]</td>
<td>Al</td>
<td>NS</td>
<td>NS</td>
<td>Range</td>
<td>Average</td>
<td>12.1</td>
<td>12.5</td>
<td>11.4 - 12.2</td>
<td>12.2</td>
<td>Leaching from natural deposits</td>
</tr>
<tr>
<td>Hardness (Total Hardness)</td>
<td>ppm</td>
<td>NS</td>
<td>NS</td>
<td>Range</td>
<td>Average</td>
<td>107 - 110</td>
<td>277 - 281</td>
<td>127 - 190</td>
<td>167</td>
<td>108 ppm = 6.25 grains per gallon (gpg)</td>
</tr>
<tr>
<td>Magnesium</td>
<td>ppm</td>
<td>NS</td>
<td>NS</td>
<td>Range</td>
<td>Average</td>
<td>6.2 - 7.5</td>
<td>25 - 26</td>
<td>9.0 - 16</td>
<td>17</td>
<td>279 ppm = 16.3 gpg</td>
</tr>
<tr>
<td>N-Nitrosodimethylamine</td>
<td>ppt</td>
<td>NL = 10</td>
<td>3</td>
<td>Range</td>
<td>Average</td>
<td>ND</td>
<td>ND</td>
<td>2.5 - 2.7</td>
<td>ND</td>
<td>Erosion of natural deposits; residue from water treatment processes</td>
</tr>
<tr>
<td>pH</td>
<td>units</td>
<td>NS</td>
<td>NS</td>
<td>Range</td>
<td>Average</td>
<td>8.2 - 8.3</td>
<td>8.1</td>
<td>7.4 - 8.2</td>
<td>8.1</td>
<td>10% of water is de-ionized</td>
</tr>
<tr>
<td>Potassium</td>
<td>ppm</td>
<td>NS</td>
<td>NS</td>
<td>Range</td>
<td>Average</td>
<td>2.0</td>
<td>4.5 - 4.8</td>
<td>3.0 - 4.0</td>
<td>4.0</td>
<td>Erosion of natural deposits; residue from water treatment processes</td>
</tr>
<tr>
<td>Sodium</td>
<td>ppm</td>
<td>NS</td>
<td>NS</td>
<td>Range</td>
<td>Average</td>
<td>71 - 72</td>
<td>98 - 103</td>
<td>58 - 78</td>
<td>89</td>
<td>Erosion of natural deposits; residue from water treatment processes</td>
</tr>
<tr>
<td>Total Organic Carbon</td>
<td>ppm</td>
<td>TT</td>
<td>Range</td>
<td>Average</td>
<td>1.0 - 1.4</td>
<td>1.7 - 2.6</td>
<td>0.9 - 1.0</td>
<td>1.1</td>
<td>ND</td>
<td>Runoff/leaching from natural deposits; seawater influence</td>
</tr>
<tr>
<td>Vanadium</td>
<td>ppb</td>
<td>NL = 50</td>
<td>NS</td>
<td>Range</td>
<td>Average</td>
<td>6.2</td>
<td>ND</td>
<td>3.0 - 4.0</td>
<td>ND</td>
<td>Erosion of natural deposits; residue from water treatment processes</td>
</tr>
</tbody>
</table>

5 other constituents and metals were analyzed including Radon - none were detected.

Perfluoralkyl and Polyfluoralkyl Substances (PFAS) List (Unregulated)

- Perfluoropentanoic acid
- Perfluorooctanoic acid

28 other PFAS constituents were analyzed - none were detected.
The turbidity level of the filtered water shall be less than or equal to 0.3 NTU in 95% of the measurements taken each month and shall not exceed 1.0 NTU at any time. Turbidity is a measure of the cloudiness of the water. We monitor it because it is a good indicator of the effectiveness of the filtration system.

The City’s water was in compliance with both the State Total Coliform Rule and the Federal Revised Total Coliform Rule. Over 1,000 samples were analyzed in 2022 for Total Coliform and E. Coli.

Aluminum has both primary and secondary standards. Compliance with the MCL is based on a running annual average. The secondary standard MCL was not exceeded.

Lead and Copper are sampled at the customer’s tap every (3) years. Last event was conducted in 2022 and scheduled to occur again in 2025. 35 samples were collected and the 90th percentile was reported above. No samples exceeded the AL for Lead and Copper.

MWD initiated a Fluoride Optimization Program in 2007. See text for further detail.

The MWD’s results are from 2020, part of a 4-quarter radiological monitoring program. Calleguas conducts radiological monitoring annually. Water utilities are required to make these surveys every three years.

Compliance for treatment plants that use ozone is based on a running annual average of monthly samples, which was in compliance in 2022.

Total chlorine residual measures the concentration of chloramines (5 parts chlorine and 1 part ammonia) that are added as a disinfectant system-wide.

Compliance was based on the LRAA of data collected at distribution system-wide monitoring locations. The range of all samples collected is included.

Compliance for manganese is based on a running annual average. Due to emergency drought conditions, Calleguas operated the Las Posas Wellfield as an extraordinary water supply measure to conserve MWD’s limited State Project Water supplies in 2022. The MCL was not violated.

AI measures the aggressiveness of water transported through pipes. AI <10 is highly corrosive to water system materials. AI at 12 or above indicates non-aggressive water.

Consumer confidence report (CCR) detection limits are based on method detection limit for the EPA 533 Method. Results below CCR detection limits are considered ND. PFAS results below CCR detection limits but above reporting limits are included in this report.

www.toaks.org/waterqualityreport