Do I need to take special precautions?

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as those with cancer who are undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about their drinking water from their health care providers. The EPA and the Centers for Disease Control guidelines on appropriate means to lessen the risk from infection by Cryptosporidium and other microbial contaminants are available from the US EPA Safe Drinking Water Hotline (800-426-4791).

Microbial contaminants, such as viruses and bacteria that may come from a variety of sources such as sewage treatment plants, septic systems, agricultural livestock operations and wildlife.

Lead was not detected in the water supply. However, if present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily home plumbing materials and components associated with service lines and home plumbing. The City does not use or install lead service lines but cannot control the variety of materials used in private residential plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using the water for drinking or cooking. If you do so, you may wish to collect the flushed water and re-use it for another beneficial purpose, such as watering plants. If you are concerned about lead in your water due to internal plumbing materials, you may wish to have your water tested by a private laboratory.

Inorganic contaminants, such as salts and metals that can be naturally occurring or result from urban stormwater run-off, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.

Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater run-off, agricultural application and septic systems.

Microbial contaminants, such as viruses and bacteria that may come from sewage treatment plants, septic systems, agricultural livestock operations and wildlife.

Radiochemical contaminants can be naturally occurring or the result of oil and gas production and mining activities.

Pesticides and Herbicides that may come from a variety of sources such as agriculture, urban stormwater run-off and residential uses.

Fluoride: MWD initiated a Fluoride Optimization Program in November of 2007. Naturally occurring fluoride level ranges from 0.1 to 0.3 mg/L (parts per million). MWD has adjusted the level to the optimal range for dental health of 0.7 mg/L. If you or your children are taking Fluoride supplements, please consult with your dentist or dental healthcare provider for further direction.

Purity and Contaminants: Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health risks may also be obtained by calling the Safe Drinking Water Hotline (1-800-426-4791).

The sources of drinking water (both tap and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

During the year, thousands of tests were conducted on our drinking water for over 150 drinking water constituents and contaminants to ensure the safety of your drinking water. Prior to filtration and treatment, contaminants that may be present in source water include:

Inorganic contaminants, such as salts and metals that can be naturally occurring or result from urban stormwater run-off, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.

Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater run-off, agricultural application and septic systems.

Microbial contaminants, such as viruses and bacteria that may come from sewage treatment plants, septic systems, agricultural livestock operations and wildlife.

Radiochemical contaminants can be naturally occurring or the result of oil and gas production and mining activities.

Pesticides and Herbicides that may come from a variety of sources such as agriculture, urban stormwater run-off and residential uses.

Fluoride: MWD initiated a Fluoride Optimization Program in November of 2007. Naturally occurring fluoride level ranges from 0.1 to 0.3 mg/L (parts per million). MWD has adjusted the level to the optimal range for dental health of 0.7 mg/L. If you or your children are taking Fluoride supplements, please consult with your dentist or dental healthcare provider for further direction.

Purity and Contaminants: Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health risks may also be obtained by calling the Safe Drinking Water Hotline (1-800-426-4791).

The sources of drinking water (both tap and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

During the year, thousands of tests were conducted on our drinking water for over 150 drinking water constituents and contaminants to ensure the safety of your drinking water. Prior to filtration and treatment, contaminants that may be present in source water include:

Inorganic contaminants, such as salts and metals that can be naturally occurring or result from urban stormwater run-off, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.

Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater run-off, agricultural application and septic systems.

Microbial contaminants, such as viruses and bacteria that may come from sewage treatment plants, septic systems, agricultural livestock operations and wildlife.

Radiochemical contaminants can be naturally occurring or the result of oil and gas production and mining activities.

Pesticides and Herbicides that may come from a variety of sources such as agriculture, urban stormwater run-off and residential uses.

Lead was not detected in the water supply. However, if present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily home plumbing materials and components associated with service lines and home plumbing. The City does not use or install lead service lines but cannot control the variety of materials used in private residential plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using the water for drinking or cooking. If you do so, you may wish to collect the flushed water and re-use it for another beneficial purpose, such as watering plants. If you are concerned about lead in your water due to internal plumbing materials, you may wish to have your water tested by a private laboratory.

In order to ensure that tap water is safe to drink, the SWRCB prescribes regulations that limit the number of certain contaminants in water provided by public water systems. The quality of our drinking water meets all State requirements for safe water.

Woolsey Fire Impacts: The Woolsey Fire burned through certain parts of the City’s water service area in November of 2018. Fortunately, this did not result in any negative impacts to the City’s water system infrastructure or water quality. The City’s water personnel worked around the clock to ensure that the water system maintained adequate pressure and supplied enough water for fire fighting activities. City water personnel also conducted extra sampling and testing to ensure that good water quality was maintained as well as communicated regularly with the State’s Division of Drinking Water Engineer during the duration of the fire.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as those with cancer who are undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about their drinking water from their health care providers. The EPA and the Centers for Disease Control guidelines on appropriate means to lessen the risk from infection by Cryptosporidium and other microbial contaminants are available from the US EPA Safe Drinking Water Hotline (800-426-4791).
Do I need to take special precautions?

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as those with cancer who are undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about their drinking water from their health care providers. The EPA and the Centers for Disease Control guidelines on appropriate means to lessen the risk from infection by Cryptosporidium and other microbial contaminants are available from the US EPA Safe Drinking Water Hotline (800-426-4791).

Fluoride: MWD initiated a Fluoride Optimization Program in November of 2007. Naturally occurring fluoride level ranges from 0.1 to 0.3 mg/L (parts per million). MWD has adjusted the level to the optimal range for dental health of 0.7 mg/L. If you or your children are taking fluoride supplements, please consult with your dentist or dental healthcare provider for further direction.

Purity and Contaminants: Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health risks may also be obtained by calling the Safe Drinking Water Hotline (1-800-426-4791).

The sources of drinking water (both tap and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. During the year, thousands of tests were conducted on our drinking water for substances resulting from the presence of animals or from human activity. Prior to filtration and treatment, contaminants that may be present in source water include:

- Inorganic contaminants, such as salts and metals that can be naturally occurring or result from urban stormwater run-off, industrial or domestic wastewater discharges, oil and gas production, mining, or manufacturing.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater run-off, agricultural application and septic systems.
- Microbial contaminants, such as viruses and bacteria that may come from sewage treatment plants, septic systems, agricultural livestock operations and wildlife.
- Radiological contaminants can be naturally occurring or the result of oil and gas production and mining activities.
- Pesticides and Herbicides that may come from a variety of sources such as agriculture, urban stormwater run-off and residential uses.

Lead was not detected in the water supply. However, if present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. The City does not use or install lead service lines but cannot control the variety of materials used in private residential plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using the water for drinking or cooking. If you do so, you may wish to collect the flushed water and reuse it for another beneficial purpose, such as watering plants. If you are concerned about lead in your water due to internal plumbing materials, you may wish to have your water tested by a private laboratory.

Information on lead in drinking water, testing methods and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline (1-800-426-4791) or at http://www.epa.gov/safewater/lead.

Lead Sampling at Schools: Late in 2017, eleven Conejo Valley Unified School District (CVUSD) schools, located in the City’s water service area, requested to have their water tested for lead. The testing occurred in late 2017 and the results revealed that the eleven schools were below the Maximum Contaminant Level for lead. Please contact the CVUSD if you have any questions about these results (805-497-9511).

More information about contaminants and potential health risks may also be obtained by calling the Safe Drinking Water Hotline at (1-800-426-4791). MWD has conducted a source water assessment of its State Water Project supplies. State Water Project supplies are considered to be most vulnerable to urban/storm water runoff, wildlife, agriculture, recreation and wastewater. A copy of the assessment can be obtained by contacting MWD by phone at (213)-217-6880.

In order to ensure that tap water is safe to drink, the SWRCB prescribes regulations that limit the number of certain contaminants in water provided by public water systems. The quality of our drinking water meets all State requirements for safe water.

Woolsey Fire Impacts: The Woolsey Fire burned through certain parts of the City’s water service area in November of 2018. Fortunately, this did not result in any negative impacts to the City’s water system infrastructure or water quality. The City’s water personnel worked around the clock to ensure that the water system maintained adequate pressure and supplied enough water for fire fighting activities. City water personnel also conducted extra sampling and testing to ensure that good water quality was maintained as well as communicated regularly with the State’s Division of Drinking Water Engineer during the duration of the fire.
Standards are either equal to, or more stringent than federal EPA water quality standards. Therefore, federal MCLs are not
this table is from testing performed between January 1 and December 31, 2018, unless otherwise noted. State of California
standards. The data presented in
The attached table lists the drinking water contaminants that were detected in the City’s drinking water during 2018. The
9 other metals and chemicals were analyzed (including Asbestos, Chromium, Perchlorate, Mercury and Cyanide) none were detected. Copper and Lead were not detected in the water supply.

INORGANIC CHEMICALS

<table>
<thead>
<tr>
<th>CONTAMINANT</th>
<th>UNITS</th>
<th>PRIMARY MCL</th>
<th>POTENTIAL MAJOR SOURCES IF DETECTED IN DRINKING WATER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum</td>
<td>ppm</td>
<td>500</td>
<td>Runoff/leaching from natural deposits; seawater influence</td>
</tr>
<tr>
<td>Copper (d)</td>
<td>ppm</td>
<td>Al = 1.3</td>
<td>Erosion of natural deposits; residue from water treatment processes</td>
</tr>
<tr>
<td>Fluoride (c)</td>
<td>ppm</td>
<td>0.8 - 1.2</td>
<td>Naturally occurring in the environment</td>
</tr>
<tr>
<td>Lead (d)</td>
<td>ppm</td>
<td>Al = 0.5</td>
<td>Erosion of natural deposits; residue from water treatment processes</td>
</tr>
<tr>
<td>Nitrate (as N)</td>
<td>ppm</td>
<td>0.5 - 0.5</td>
<td>Runoff & leaching from fertilizer use; sewage; erosion of natural deposits</td>
</tr>
</tbody>
</table>

14 other metals and chemicals were analyzed (including Arsenic, Chromium, Perchlorate, Mercury and Cyanide) none were detected. Copper and Lead were not detected in the water supply.

RADIOUSIDE (c) [analyzed every three years, for four consecutive quarters]

<table>
<thead>
<tr>
<th>CONTAMINANT</th>
<th>UNITS</th>
<th>PRIMARY MCL</th>
<th>POTENTIAL MAJOR SOURCES IF DETECTED IN DRINKING WATER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gross Alpha Particle Activity</td>
<td>pCi/L</td>
<td>15</td>
<td>Runoff & leaching from fertilizer use; sewage; erosion of natural deposits</td>
</tr>
<tr>
<td>Uranium</td>
<td>pCi/L</td>
<td>20</td>
<td>Runoff & leaching from fertilizer use; sewage; erosion of natural deposits</td>
</tr>
</tbody>
</table>

4 other radiouisides were analyzed - none were detected

INORGANIC CHEMICALS

<table>
<thead>
<tr>
<th>CONTAMINANT</th>
<th>UNITS</th>
<th>PRIMARY MCL</th>
<th>POTENTIAL MAJOR SOURCES IF DETECTED IN DRINKING WATER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorine</td>
<td>ppm</td>
<td>500</td>
<td>Runoff & leaching from fertilizer use; sewage; erosion of natural deposits</td>
</tr>
<tr>
<td>Fluoride</td>
<td>ppm</td>
<td>Al = 0.5</td>
<td>Naturally occurring in the environment</td>
</tr>
<tr>
<td>Lead</td>
<td>ppm</td>
<td>Al = 0.5</td>
<td>Erosion of natural deposits; residue from water treatment processes</td>
</tr>
<tr>
<td>Nitrate (as N)</td>
<td>ppm</td>
<td>0.5 - 0.5</td>
<td>Runoff & leaching from fertilizer use; sewage; erosion of natural deposits</td>
</tr>
</tbody>
</table>

14 other metals and chemicals were analyzed (including Arsenic, Chromium, Perchlorate, Mercury and Cyanide) none were detected. Copper and Lead were not detected in the water supply.

RADIOUSIDE (c) [analyzed every three years, for four consecutive quarters]

<table>
<thead>
<tr>
<th>CONTAMINANT</th>
<th>UNITS</th>
<th>PRIMARY MCL</th>
<th>POTENTIAL MAJOR SOURCES IF DETECTED IN DRINKING WATER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gross Alpha Particle Activity</td>
<td>pCi/L</td>
<td>15</td>
<td>Runoff & leaching from fertilizer use; sewage; erosion of natural deposits</td>
</tr>
<tr>
<td>Uranium</td>
<td>pCi/L</td>
<td>20</td>
<td>Runoff & leaching from fertilizer use; sewage; erosion of natural deposits</td>
</tr>
</tbody>
</table>

4 other radiouisides were analyzed - none were detected

DISINFECTION RESIDUALS / DISINFECTION BY-PRODUCTS

<table>
<thead>
<tr>
<th>CONTAMINANT</th>
<th>UNITS</th>
<th>PRIMARY MCL</th>
<th>POTENTIAL MAJOR SOURCES IF DETECTED IN DRINKING WATER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bromate (f)</td>
<td>ppm</td>
<td>0.3</td>
<td>Runoff & leaching from fertilizer use; sewage; erosion of natural deposits</td>
</tr>
<tr>
<td>Total Chlorine Residual</td>
<td>ppm</td>
<td>5</td>
<td>Runoff & leaching from fertilizer use; sewage; erosion of natural deposits</td>
</tr>
<tr>
<td>Haloacetic Acids (g) [Including UCMR4]</td>
<td>ppm</td>
<td>60</td>
<td>Runoff & leaching from fertilizer use; sewage; erosion of natural deposits</td>
</tr>
<tr>
<td>Total Trihalomethanes (g)</td>
<td>ppm</td>
<td>80</td>
<td>Runoff & leaching from fertilizer use; sewage; erosion of natural deposits</td>
</tr>
</tbody>
</table>

ABBREVIATIONS AND DEFINITIONS

Below you will find many terms and abbreviations you might not be familiar with. To help you better understand these terms we’ve provided the following definitions:

AI = Aggressiveness Index
AL = Federal Regulatory Action Level = The level of contaminant which, when exceeded, triggers treatment or other requirements that a water system must follow.
BOP = Disinfection By-Product
LRAA = Locational Running Annual Average
MCL = Maximum Contaminant Level = The highest level of contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is practicable and are enforceable standards.
MCLG = Maximum Contaminant Goal = The level of contaminant below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency (Cal-EPA).
MRDL = Maximum Residual Disinfectant Level = The level of contaminant in drinking water below which there is no known or expected risk to health. MRDLs are set as close to the PHGs (or MCLGs) as is practicable and are enforceable standards.
MRDLG = Maximum Residual Disinfectant Goal = The level of contaminant in drinking water below which there is no known or expected risk to health. MRDLGs are set as close to the PHGs (or MCLGs) as is practicable and are enforceable standards.
NAA = Not Applicable
ND = None Detected
PCDD/Fs = Polychlorinated Dibenzo-p-Dioxins and Dibenzofurans
PCBs = Polychlorinated Biphenyls
PFOS = Perfluorooctanoic Acid
PFOA = Perfluorooctanesulfonic Acid
Phenol = p-Cresol
THMs = Trihalomethanes
TVOC = Total Volatile Organic Compounds

FOOTNOTES:
(a) The turbidity level of the filtered water is measured using a light scattering turbidimeter. Turbidity level is an indication of the effectiveness of the filtration system.
(b) Chlorine residuals in water are measured as free chlorine. Free chlorine is the concentration of chlorine remaining in the water after all the combined chlorine has reacted with organic materials. Free chlorine is a disinfectant that is necessary for control of microbial contaminants in drinking water. Contaminants with SDWSs are regulated in accordance with both the state Total Coliform Rule and the federal Revised Total Coliform Rule. Over 1,000 samples were analyzed in 2010 for Total Coliform and E. Coli. (c) MWD initiated a Fluoride Optimization Program in 2005. See text for further detail.
(d) Lead and Copper are sampled at the customer’s tap every 10 years. Last event was conducted in 2016 and scheduled to occur again in 2023. Other samples were analyzed for lead for 2018. See text for more information.
(e) Results are from 2017, part of a 4-quarter radiological monitoring program.
(f) Water utilities are required to make these reports to EPA as well as the Metropolitan Water District of Southern California (MWD) and the California Department of Public Health (CDPH). The City sampled and tested it’s water supply for various metals, pesticides, alcohols, halogenated compounds, and halogenated acids. Only manganese and some forms of halogenated acids were detected and the results are reported in the table data above, along with their monitoring and reporting requirements.
(g) Algae are monitored by the Metropolitan Water District (MWD) as part of their quarterly unregulated contaminant monitoring rule (UCMR4). The City’s water was in compliance with all state Total Coliform Rule and the Federal Revised Total Coliform Rule. Over 1,000 samples were analyzed in 2010 for Total Coliform and E. Coli. (h) MWD initiated a Fluoride Optimization Program in 2005. See text for further detail.
(i) Compliance for treatment plants that use ozone is based on a running annual average of monthly samples, which was in compliance in 2010.
(j) Compliance was based on the LANA of data collected at distribution system-wide monitoring locations. The range of all samples collected is included.
(k) Al, the aggressiveness index of the disinfection process, is the opposite of the disinfection by-products. A higher Al indicates a disinfectant is more effective.
The attached table lists the drinking water contaminants that were detected in the City’s drinking water during 2018. The presence of any of these contaminants in the water does not necessarily constitute a health risk. As you can determine from the results, the quality of the water delivered by the City consistently meets all state standards. The data presented in this table is from testing performed between January 1 and December 31, 2018, unless otherwise noted. State of California Standards are either equal to, or more stringent than federal EPA water quality standards. Therefore, federal MCLs are not listed. Applicable Abbreviations, Definitions and Notes are identified at the conclusion of the Table.

Primary Standards - Mandatory Health RELATED Standards

| CONTAMINANT | UNITS | STATE MCL | PHG (MCLG) | RANGE AVERAGE | CITY OF THOUSAND OAKS WATER SUPPLY | POTENTIAL MAJOR SOURCES IF DETECTED IN DRINKING WATER |
|-------------|-------|-----------|------------|---------------|------------------------------------|--|}
| **CAlRITY** (a) Combined Fiber Efluent Tintadity | NTU | 0.3 | Highest Value | 0.6 | Soil runoff |
| **MICROBIOLOGICAL** | % | 0 - 0 | Highest Monthly % | 1.5 | Naturally occurring in the environment |

Standards for Cryptosporidium, Giardia lamblia, Legionella, viruses and Helicobacter. Plate Count bacteria are Treatment Techniques (TT) with which Metropolitan and Calleguas comply. There were no detections of E. coli bacteria in the city’s distribution system in 2018.

Organic Chemicals

- 28 chemicals were analyzed - none were detected
- 8 chemicals were analyzed - none were detected
- 27 chemicals were analyzed (including MTBE, PCE and TCE) - none were detected

Inorganic Chemicals

- Aluminum: 1000 ppm, 0.0 ppm, Range/Avg.: ND - 75 ND
- Sodium: ppm, 20 ppm, Range/Avg.: 84 - 94

Disinfectant Residuals / Disinfection By-Products

- Bromate (b): 10 ppm, 0 ppm, Range/Avg.: ND - 5.2
- Chlorine Residual: ppm, 2.0 ppm, Range/Avg.: 1.25 - 2.00
- Haloacids (c) (Including UCMR): 60 ppm, 0 ppm, Range/Avg.: 0 - 5.9
- Total Trihalomethanes (g): 80 ppm, 0 ppm, Range/Avg.: 12 - 28

ABBREVIATIONS AND DEFINITIONS

Below you will find many terms and abbreviations you might not be familiar with. To help you better understand these terms we’ve provided the following definitions:

- **AI** = Aggressiveness Index
- **AL** = Federal Regulatory Action Level = the level of a contaminant which, when exceeded, triggers treatment or other requirements that a water system must follow
- **DBP** = Disinfection By-Product
- **LRA** = Locational Running Annual Average
- **MCL** = Maximum Contaminant Level = the highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as a health protection level (12 or above indicates non-aggressive water)
- **MCLR** = Maximum Corrosion Limit = the level of contaminant in drinking water below which there is no known or expected risk to health
- **MMAD** = Maximum Median Averge Daily Level = the level of contaminant in drinking water below which there is no known or expected risk to health
- **MRDLG** = Maximum Contaminant Limit = the level of contaminant in drinking water below which there is no known or expected risk to health
- **PHG** = Public Health Goal = the level of a contaminant in drinking water below which there is no known or expected risk to health
- **PSDS** = Primary Drinking Water Standard = the level of a contaminant in drinking water below which there is no known or expected risk to health
- **pCi/L** = Picocuries per liter (units to measure radiation)
- **ppb** = Parts per billion (units to measure conductivity)
- **ppm** = Parts per million (units to measure conductivity)
- **RLAA** = Running Longitudinal Average
- **SDWS** = Secondary Drinking Water Standard = MCLs for contaminants that do not affect taste, odor, or appearance of the drinking water
- **TON** = Threshold Odor Number
- **UCMR** = Unregulated Contaminant Monitoring Rule
- **USP** = Uniform Sanitation Standard

Notes:

- [a] The turbidity level of the filtered water is a measure of the effectiveness of the filtration system.
- [b] The City’s water is in compliance with the state total California Rule and the Federal Revised Total Coliform Rule. Over 1,000 samples were analyzed in 2018 for Total Coliform and E. Coli.
- [c] MMAD纳入了一个氟化物 Optimization Program in 11/10. See text for further detail.
- [d] Lead and Copper are sampled at the customer’s tap every 3 years. Last event was conducted in 2015 and scheduled to occur again in 2019. Eleven schools were sampled for lead in 2018. See text for further information.
- [e] Results are from 2017, part of a 4-year radiological monitoring program. Water utilities are required to be tested by these surveys every 3 years. The gross beta particle activity, MCL is 4 milli-rem per year. The screening level is 50 pCi/L.
- [f] Compliance for treatment plants that use ozone is based on a running annual average of monthly samples, which was in compliance in 2018.
- [g] Compliance was based on the LNA of data collected at distribution system wide monitoring locations. The range of all samples collected is included.
- [h] Al measures the aggressiveness of water transported through pipes. AL <10 is an indication of the effectiveness of the filtration system.
- [i] The City’s water is in compliance with the state total California Rule and the Federal Revised Total Coliform Rule. Over 1,000 samples were analyzed in 2018 for Total Coliform and E. Coli.