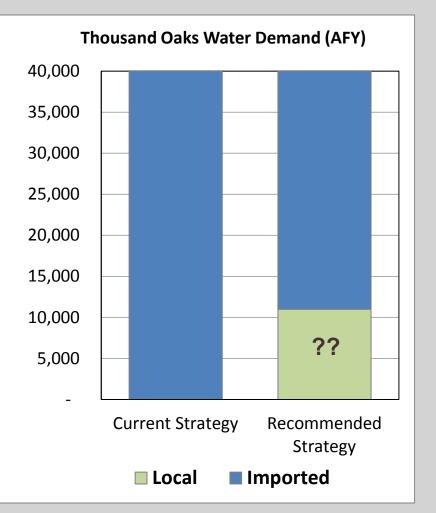
Ţ

City of Thousand Oaks


CONEJO VALLEY GROUNDWATER STUDY

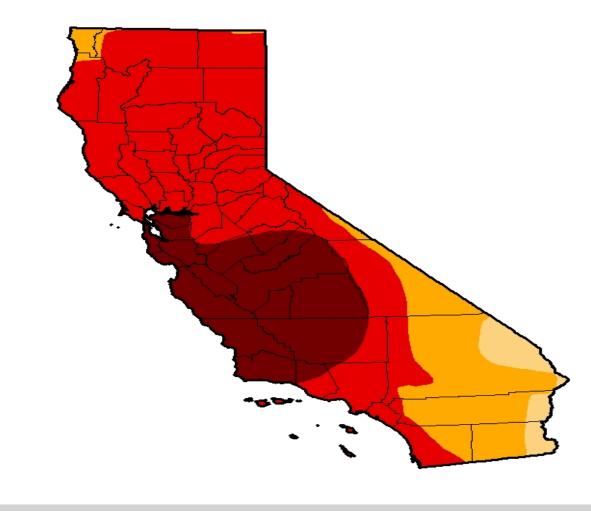
Study Overview and Recommendations Jay Spurgin, Public Works Director January 26, 2016

STUDY DRIVERS AND GOAL

- Early Conejo Valley development relied solely on groundwater
- Imported State Water became available, in late 1960s
- Study drivers:
 - Costs of imported water increasing (~\$1,400/AF in 2016)
 - State Water unreliability
- Improve reliability by increasing local supply

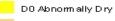
INCREASING COST OF WATER

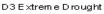
WATER SUPPLY CHALLENGES

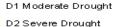


THE DROUGHT

U.S. Drought Monitor California


May 6, 2014


(Released Thursday, May. 8, 2014) Valid 8 a.m. EDT


Drought Conditions (Percent Area)

	None	D0-D4	D1-D4	D2-D4	D3-D4	D4
Current	0.00	100.00	100.00	95.93	76.68	24.77
Last Week 4/29/2014	0.00	100.00	100.00	96.01	76.68	24.77
3 Month s Ago 2/4/2014	1.43	98.57	94.18	89.91	67.13	9.81
Start of Calendar Year 1231/2013	2.61	97.39	94.25	87.53	27.59	0.00
Start of Water Year 10/2/2013	2.63	97.37	95.95	84.12	11.36	0.00
One Year Ago 577/2013	0.00	100.00	98.16	46.25	0.00	0.00

Intensity:

D4 Exceptional Drought

The Drought Monitor focuses on broad-scale conditions. Local conditions may vary. See accompanying text summary for forecast statements.

Author:

Mark Svoboda National Drought Mitigation Center

http://droughtmonitor.unl.edu/

STUDY IS CENTERED ON FOUR MAJOR TASKS

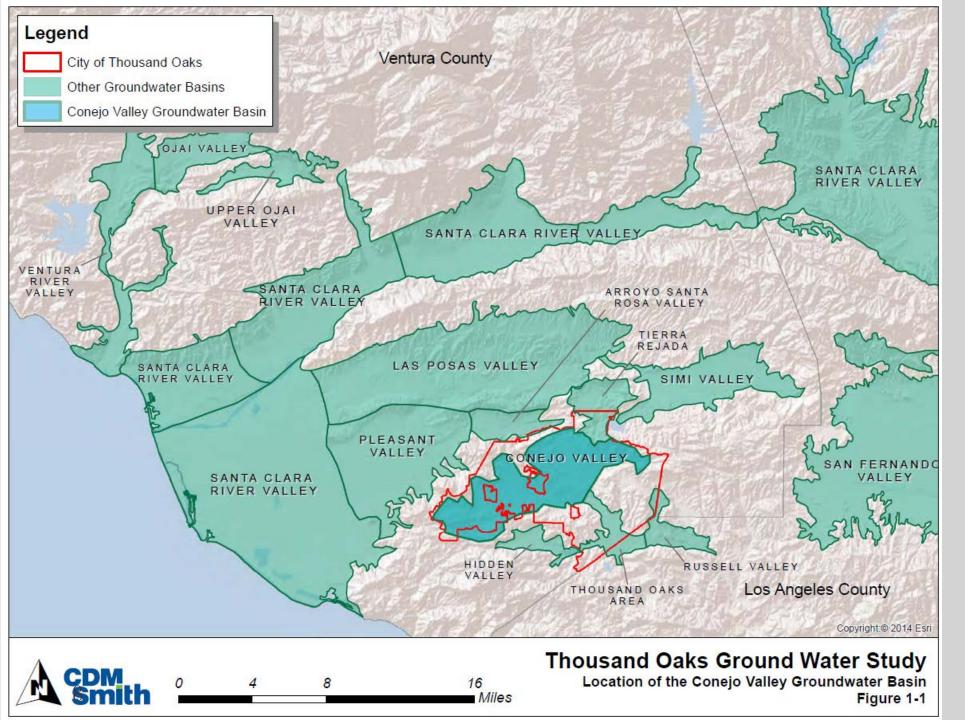
Technical Studies

- Conduct groundwater characterization/ monitoring
- Evaluate stormwater capture potential
- Assess reclaimed/non-potable market
- Evaluate large industrial dischargers.

Project Options

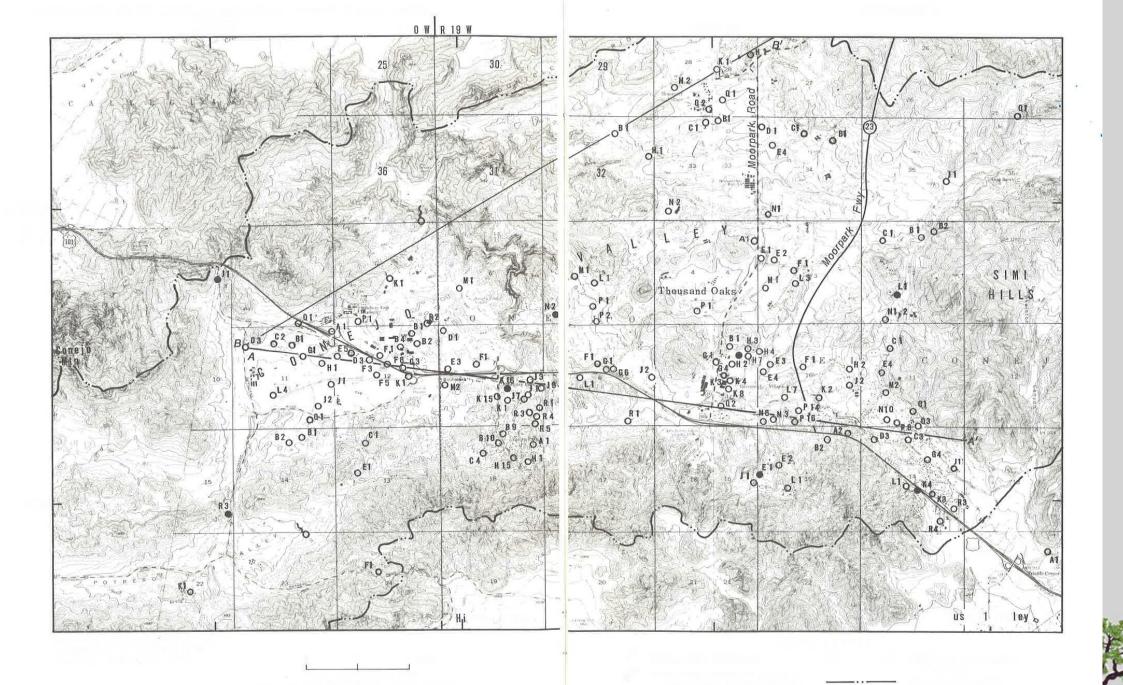
- Screen potential supply projects for technical feasibility
- Estimate costs and supply yields for feasible projects
- Assess regulatory permitting requirements
- Evaluate other project characteristics (e.g. legal, institutional, customer acceptance).

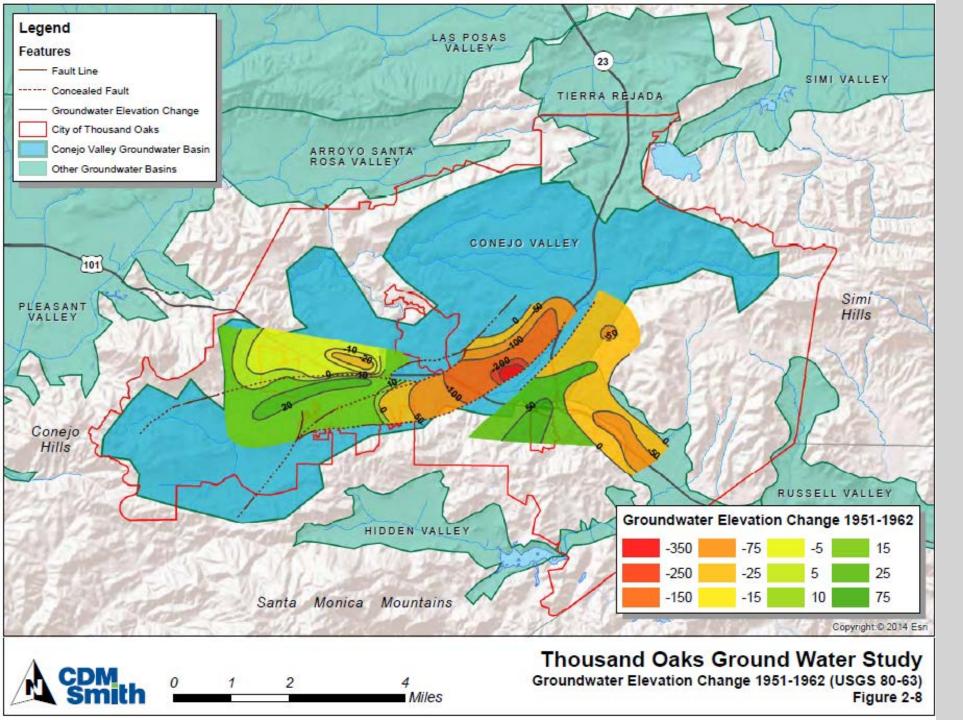
Alternatives Analysis


- Combine feasible projects into different alternatives
- Estimate financial impacts
- Evaluate alternatives using decision support tool
- Develop near-term and long-term strategies.

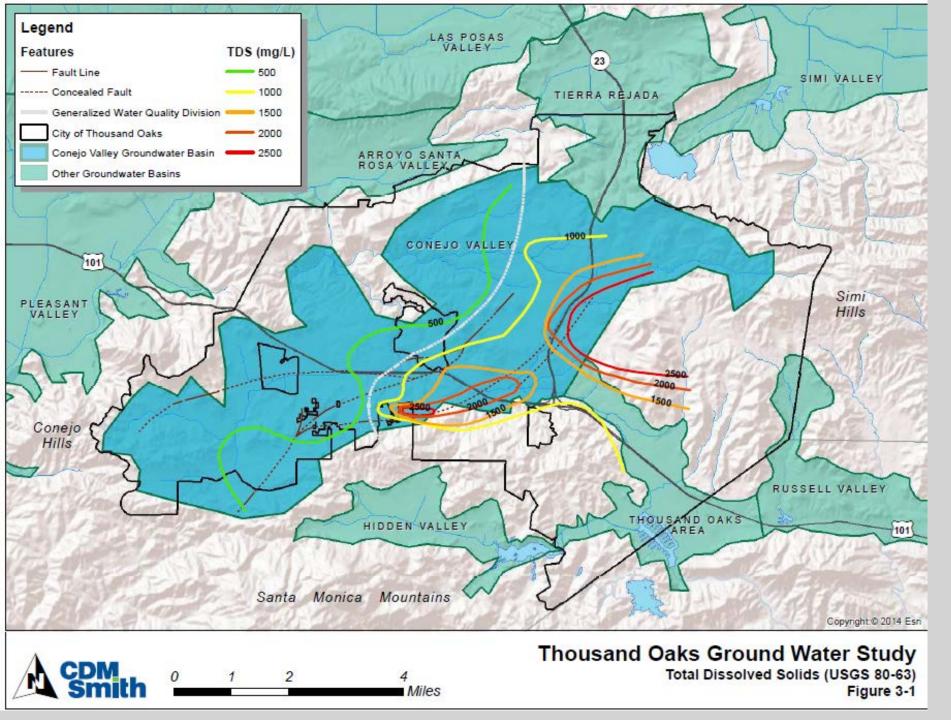
Documentation

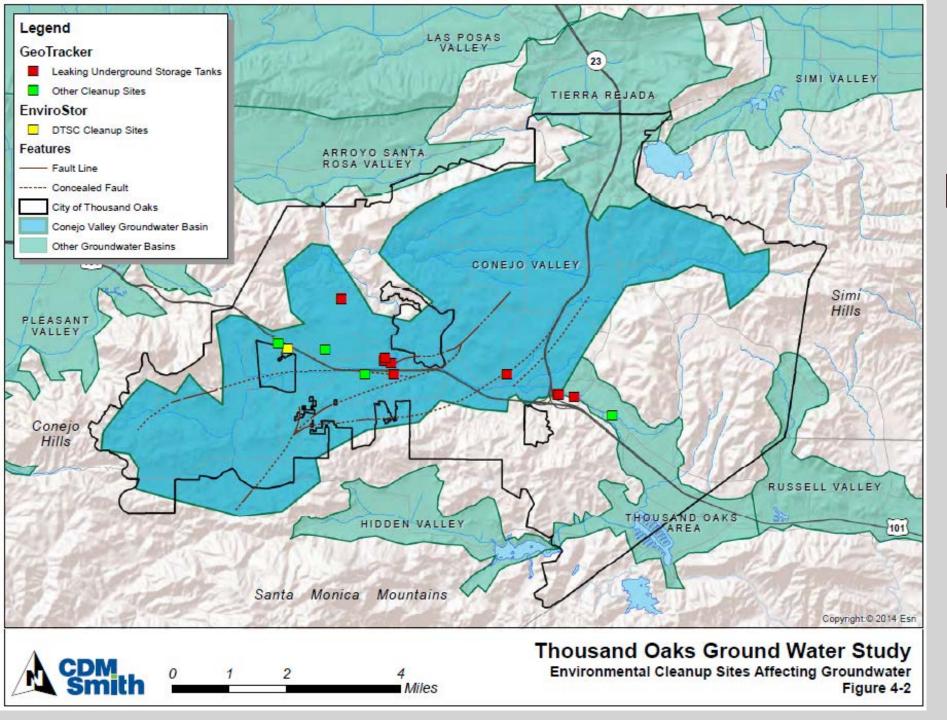
- Provide reclaimed/non-potable market study technical memorandum
- Prepare local water supply feasibility study report
- Outline requirements for future groundwater management plan.


PROJECT MANAGEMENT STAKEHOLDER COORDINATION



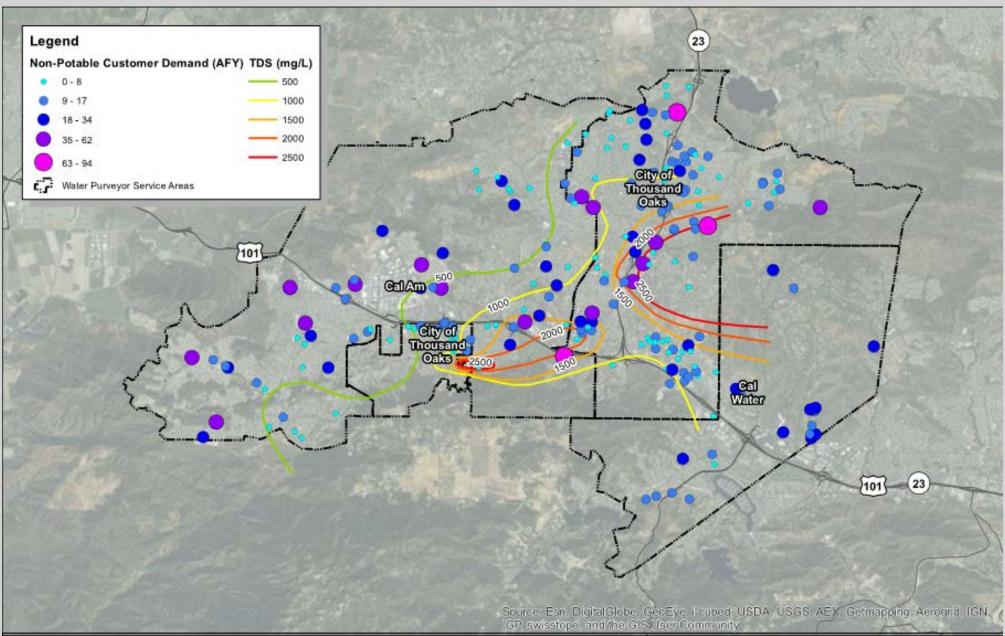
LOCATION OF THE CVGB




HISTORICAL OVERDRAFT OF THE CVGB

HISTORICAL WATER QUALITY IN THE CVGB

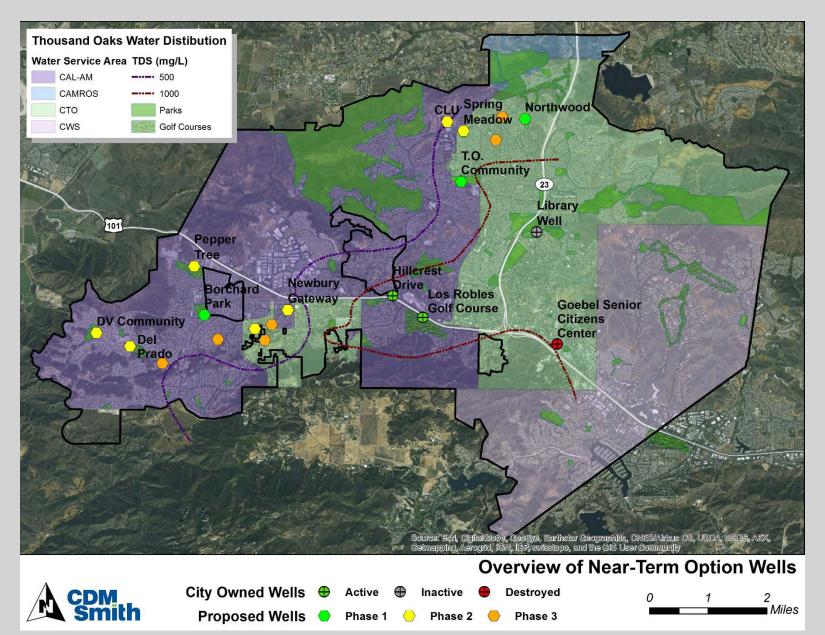
ENVIRONMENTAL CLEANUP SITES THAT MAY HAVE IMPACTED GROUNDWATER



CVGB OPERATIONAL YIELD ASSESSMENT

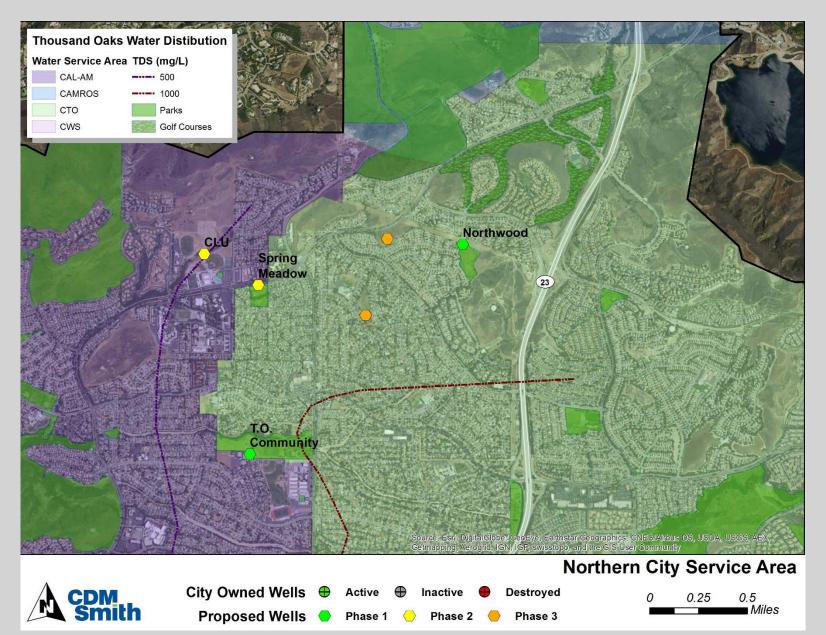
	Operational Yield (AFY)			
Method	Low Range	High Range		
Prior estimate (USGS) based on Conejo Creek Discharge	2,000			
Current Estimate based on Conejo Creek Discharge	3,300	3,500		
Replenishment of overdraft post 1963	2,000	3,000		
Water budget analysis	8,000*			
SELECTED BASIN YIELD	3,5	500		

POTENTIAL NON-POTABLE WATER DEMAND

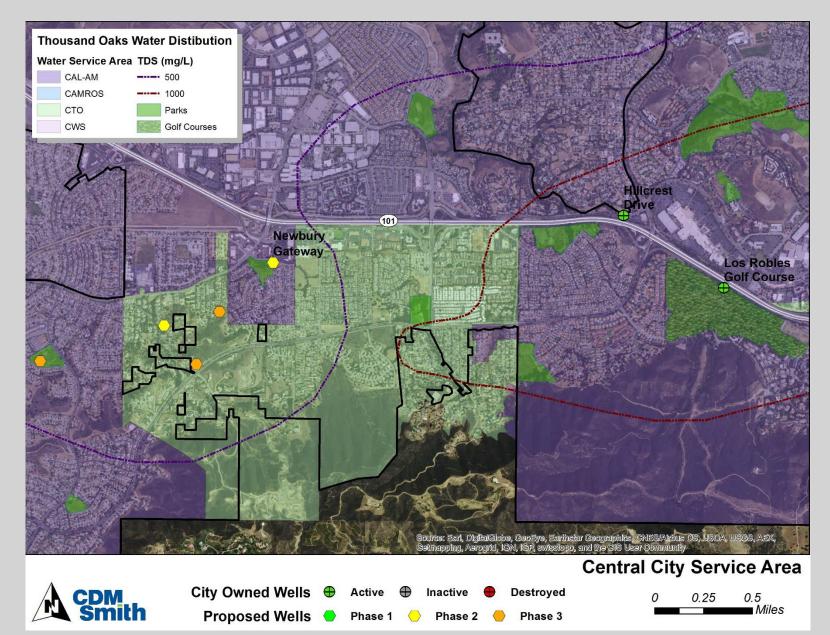


GROUNDWATER AND REUSE SUPPLY OPTIONS

Near-Term	Mid-Term	Long-Term
 Groundwater Phase 1 Extract from higher quality areas of groundwater basin for non-potable uses Partial treatment at Los Robles Golf course to reduce TDS and iron Target Yield = 480AFY 	Groundwater Phase 3 Additional wells with minimal treatment for potable distribution Target Yield = 1,260 AFY -OR- Brackish Desalination Brackish GW desalination Target Yield = 650 AFY 	Potable Reuse Direct Potable Reuse/Reservoir Augmentation Target Yield: Small-Scale = 2,600 AFY Large-Scale = 7,200 AFY
Groundwater Phase 2 • Minimal treatment for potable distribution Target Yield = 1,800 AFY	Additional Non-Potable Reuse • Non-potable reuse from LVMWD Target Yield = 615 AFY	Groundwater Recharge • Camrosa GWR Target Yield = 200 AFY
Add	itional water conservation Target Yield =	TBD



OVERVIEW OF PROPOSED GROUNDWATER WELLS



GROUNDWATER OPTIONS - NORTH CITY SERVICE AREA

GROUNDWATER OPTIONS - CENTRAL CITY SERVICE AREA

GROUNDWATER OPTIONS - CAL AM SERVICE AREA

GROUNDWATER OPTIONS SUMMARIZED

	Near-T	Near-Term		
Service Area	Phase 1	Phase 2	Phase 3	Groundwater Total
North City Capacity (AFY)	240	600	420	1,260
Central City Capacity (AFY)	180	420	420	1,020
Cal Am Capacity (AFY)	60	780	420	1,260
Total Capacity (AFY)	480	1,800	1,260	3,540
Capital Cost (\$M)	\$7.95	\$20.08	\$14.94	
O&M Cost (\$M)	\$0.20	\$0.45	\$0.24	

OTHER MID-TERM OPTIONS

- 1. Brackish Groundwater Desalination
- 2. Additional non-potable recycled water from LVMWD

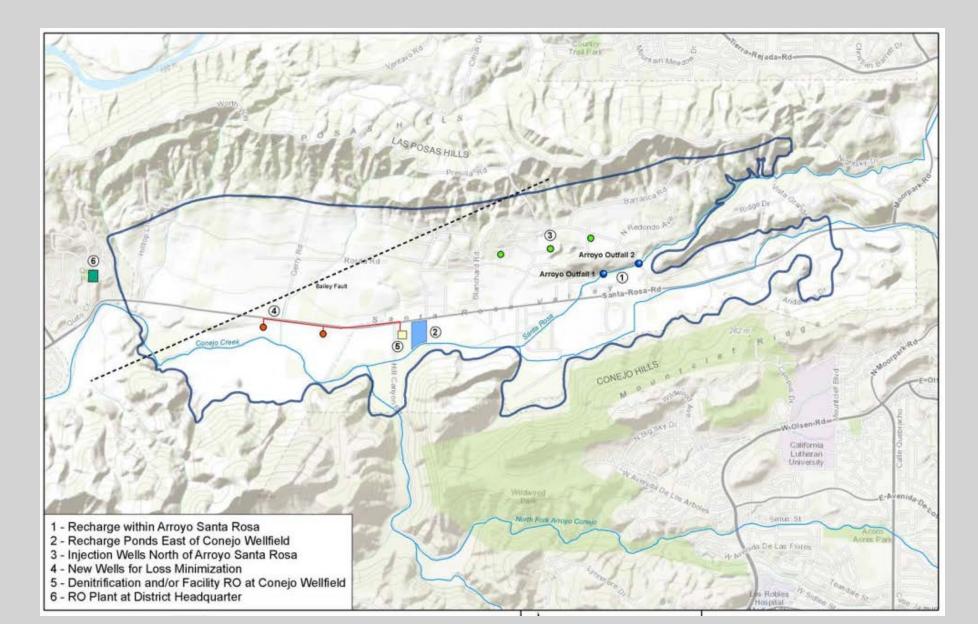
CONCEPTUAL COSTS FOR OTHER MID-TERM OPTIONS

Option	Yield (AFY)	Capital Costs (\$M)	O&M Costs (\$M)
Brackish GW Desalination	650	\$14.40	\$0.40
Additional Non- Potable Reuse	615	\$12.53	\$0.80*

* Purchase cost of recycled water from LVMWD estimated at \$1,300/AF.

LONG-TERM OPTION S

- 1. Direct Potable Reuse (DPR)/Reservoir augmentation (RA) utilizing Lake Bard
- 2. Camrosa groundwater replenishment (GWR) project in the Santa Rosa Basin


LONG-TERM OPTION 1 - POTABLE REUSE

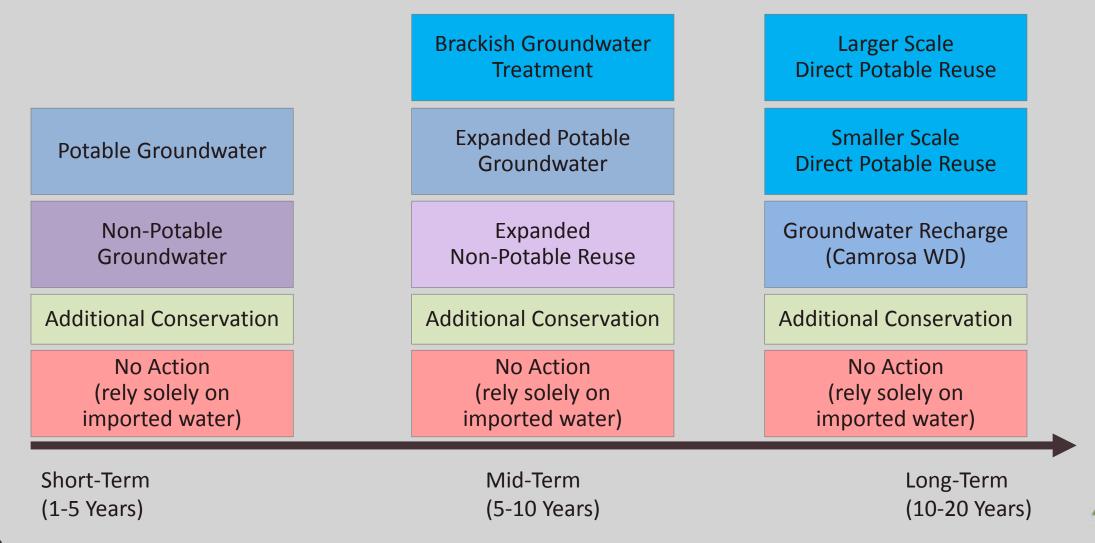
24

LONG-TERM OPTION 2 – CAMROSA GWR

CONCEPTUAL COSTS FOR LONG-TERM OPTIONS

Option	Yield (AFY)	Capital Costs (\$M)	O&M Costs (\$M)
1a – Small-Scale DPR	2,600	\$57.70	\$3.18*
1b – Large-Scale DPR	7,200	\$116.10	\$7.71*
2 – Camrosa GWR	200	\$7.5M	Minimal

* Includes cost for water treatment at Lake Bard by Calleguas MWD.


OBJECTIVES AND METRICS

No.	Objective	Weight	Sub-Objective	Sub-Weight	Metric
1	Water Reliability	30	New Local Supply	60	Percent of local supply
			Certainty of Local Water Supply	40	Certainty score*
2	Cost-Effectiveness	30	Lifecycle Cost	50	Present value score (\$M)
			Capital Cost	40	Capital Cost (\$M)
			Potential for Outside Funding	10	Funding score*
3	Implementation Ease	15	Institutional Complexity	40	Institutional score*
			Permitting Complexity	30	Permitting score*
			Customer Acceptance	30	Acceptance score*
4	Operational Ease	10	Operational Complexity	100	Operational score*
5	Environmental	10	Impact to Creek's Ecosystem	55	Creek score*
			Impact to HCTP	35	HCTP score*
			Carbon Footprint	10	Marginal Energy (kWh/AF)
6	Secondary Water Quality	5	Water Hardness	100	Hardness score*

* Qualitative score from 1-5, where 1 = poor performance and 5 = superior performance.

ALTERNATIVES ARE ASSEMBLED FROM DIFFERENT COMBINATIONS OF OPTIONS

DEFINITION OF ALTERNATIVES

Alt	Name	Description		Total Local		
	Name	Description	Near-Term	Mid-Term	Long-Term	Supply (AFY)
1	No Action	No new local supplies	None	None	None	0
2	Exploratory	Initial irrigation wells	GW Phase 1	None	None	480
3	Low Unit Cost	Alt #2 + potable wells	GW Phase 1 + 2	GW Phase 3	None	3,540
4	Low Unit Cost Plus	Alt #3 + NPR expansion GW Phase 1 + 2 GW Phase 3 + None NPR		4,155		
5	Higher Reliability	GW Phase 1 + 2, + brackish desalination	$ \langle \nabla W \rangle$ Phase $1 + 2 = Brackish Secal None$		2,930	
6	Higher Reliability Plus	Alt #5 + NPR expansion	NPR expansionGW Phase 1 + 2Brackish Desal + NPRNone		3,545	
7	Full Resource Utilization A	Alt #6 + GWR in Camrosa	amrosa GW Phase 1 + 2 Brackish Desal + Camrosa GWR		3,745	
8	Full Resource Utilization B	Alt #6 + Small-Scale DPR	GW Phase 1 + 2 Brackish Desal + Small-Scale DPR		6,145	
9	Full Resource Utilization C	Alt #6 + Large-Scale DPR	GW Phase 1 + 2	Brackish Desal + NPR	Large-Scale DPR	10,745

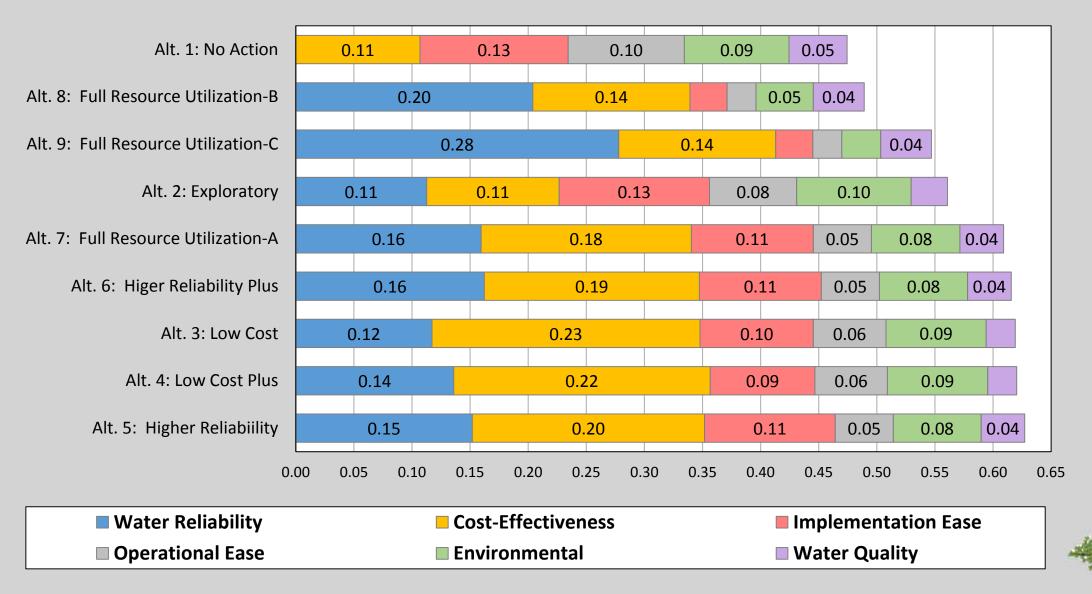
UNIT COST FOR OPTIONS

Option	Supply Yield (AFY)	Current Unit Cost (\$/AF)	Unit Cost in 2035 (\$/AF)
Imported Water	As Needed	\$ 1,391	\$ 3,355*
Phase 1 Groundwater	480	\$ 1,507	\$ 1,838
Phase 2 Groundwater	1,800	\$ 976	\$ 1,178
Phase 3 Groundwater	1,260	\$ 961	\$ 1,113
Brackish Groundwater Desal	650	\$ 2,051	\$ 2,542
Non-Potable Reuse	615	\$ 2,622	\$ 3,670
Camrosa GWR	200	\$ 2,439	\$ 2,439
Small-Scale DPR	2,600	\$ 2,174	\$ 2,763
Large-Scale DPR	7,200	\$ 1,781	\$ 2,372
Seawater Desal (comp. only)	NA	\$ 2,800	\$ 3,929

* Assumes 4.5% escalation (historical escalation ~7%)

UNIT COST FOR OPTIONS

Option	Supply Yield (AFY)	Current Unit Cost (\$/AF)	Unit Cost in 2035 (\$/AF)
Imported Water	As Needed	\$ 1,391	\$ 3,355*
Phase 1 Groundwater	480	\$ 1,507	\$ 1,838
Phase 2 Groundwater	1,800	\$ 976	\$ 1,178
Phase 3 Groundwater	1,260	\$ 961	\$ 1,113
Brackish Groundwater Desal	650	\$ 2,051	\$ 2,542
Non-Potable Reuse	615	\$ 2,622	\$ 3,670
Camrosa GWR	200	\$ 2,439	\$ 2,439
Small-Scale DPR	2,600	\$ 2,668	\$ 3,655
Large-Scale DPR	7,200	\$ 2,199	\$ 2,982
Seawater Desal (comp. only)	NA	\$ 2,800	\$ 3,929


* Assumes 4.5% escalation (historical escalation ~7%)


ALTERNATIVES SCORE CARD

			Alternatives								
Objective	Sub-Objective	Metric	Alt 1. No Action	Alt 2. Exploratory	Alt 3. Low Unit Cost	Alt 4. Low Unit Cost Plus	Alt 5. Higher Reliability	Alt 6. Higher Reliability Plus	Alt 7. Full Resource-A	Alt 8. Full Resource-B	Alt 9. Full Resource-C
1. Water Reliability	New Local Supply	Percent of local supply	0%	1%	9%	10%	7%	9%	9%	15%	27%
	Certainty of Local Water Supply	Certainty score	1.0	4.5	3.0	3.3	4.5	4.5	4.3	4.5	4.5
	Lifecycle Cost (2015-2040)	Present value cost (\$M)	1,299	1,300	1,256	1,259	1,273	1,278	1,278	1,286	1,278
2. Cost-Effectiveness	Capital Cost	Capital cost (\$M)	-	8.1	43.1	55.6	42.6	55.1	62.6	112.8	171.1
	Potential for Outside Funding	Funding score	1.0	2.0	3.0	3.3	4.0	4.3	4.3	4.5	4.5
	Institutional Complexity	Institutional score	5.0	4.0	3.0	2.5	4.0	3.5	3.5	2.0	1.5
3. Implementation Ease	Permitting Complexity	Permitting score	5.0	4.5	3.0	3.0	3.5	3.5	3.5	2.0	1.5
	Customer Acceptance	Acceptance score	3.0	5.0	5.0	5.0	4.5	4.5	4.5	1.5	1.5
4. Operational Ease	Operational Complexity	Operational score	5.0	4.0	3.5	3.5	3.0	3.0	3.0	2.0	1.5
	Impact to Creek's Ecosystem	Creek score	5.0	5.0	4.0	4.0	4.0	4.0	4.0	2.0	1.0
5. Environmental	Impact to HCTP	HCTP score	5.0	5.0	5.0	5.0	4.0	4.0	4.0	4.5	4.5
	Carbon footprint	Marginal Energy (kWh/AF)	3,300	1,341	994	995	1,437	1,365	1,295	2,165	2,663
32 6. Water Quality	Water Hardness	Hardness score	5.0	3.5	3.0	3.0	4.0	4.0	4.0	4.5	4.5

ALTERNATIVES RANKING WITH PREFERRED WEIGHTS

RECOMMENDED ADAPTIVE IMPLEMENTATION STRATEGY

BENEFITS OF RECOMMENDED STRATEGY

- <u>Increase</u> in local supply ranging from ~3,000 to 11,000, AFY depending on implementation of potable reuse
- <u>Reduced</u> risks from droughts and seismic events affecting imported water
- Average cost of water supply 2% to 7% <u>lower</u> than status quo of full reliance on imported water

NEXT STEPS

- Develop institutional arrangements
 - -Partnerships with water purveyors, Calleguas MWD and County
 - -Groundwater Sustainability Agency
 - -Groundwater Sustainability Plan
- Plan, design and construct first phase irrigation wells

Ţ

City of Thousand Oaks